
Substances can be classified as:
elements mixtures
Elements can be divided into:
metals non-
(a) Define each of the following terms.
(i) element
[2]
(ii) compound
[2]
(iii) mixture
[1]
(b) Classify each of the following as either an element, compound or mixture.
(i) brass[1]
(ii) carbon dioxide[1]
(iii) copper[1]
(c) Which physical property is used to distinguish between metals and non-metals? It is possessed by all metals but by only one non-metal.
[1]
[Total: 9]

2 (a) The diagram shows the lattice of a typical ionic compound.

	(i)) Ex	plain	the	term	ionic	lattice.
--	-----	------	-------	-----	------	-------	----------

(ii)

(iii)

[2]
In this lattice, the ratio of positive ions to negative ions is 1:1. In the lattice of a different ionic compound, the ratio of positive ions to negative ions is 1:2.
Suggest why this ratio varies in different ionic compounds.
Give three physical properties of ionic compounds.

.....[3]

(b) Strontium oxide is an ionic compound. Draw a diagram which shows its formula, the charges on the ions and the arrangement of the **valency** electrons around the negative

The electron distribution of a strontium atom is 2 + 8 + 18 + 8 + 2.

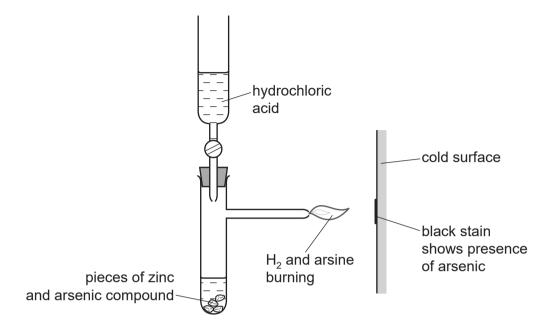
Use o to represent an electron from a strontium atom.

Use x to represent an electron from an oxygen atom.

	mond and graphite are different forms of the same element, carbon. plain the following in terms of their structure.	
(a)	Graphite is a soft material which is used as a lubricant.	
(b)	Diamond is a very hard material which is used for drilling and cutting.	[-]
		[2]
(c)	Graphite is a good conductor of electricity and diamond is a poor conductor.	
		[2]
		[Total: 6]

3

4 Both strontium and sulfur have chlorides of the type XCl_2 . The table below compares some of their properties.


	strontium chloride	sulfur chloride
appearance	white crystals	red liquid
formula	$\mathrm{SrC}l_2$	SCl ₂
melting point/°C	874	-120
boiling point/°C	1250	59
conductivity of liquid	good	poor
solubility in water	dissolves to form a neutral solution	reacts to form a solution of pH1

(a)	Use the data in the table to explain why sulfur chloride is a liquid at room temperature, 25 °C.
	[2]
(ii)	Strontium is a metal and sulfur is a non-metal. Explain why both have chlorides of the type XCl_2 .
	The electron distribution of a strontium atom is 2 + 8 + 18 + 8 + 2.
	[2]
(iii)	Deduce the name of the acidic compound formed when sulfur chloride reacts with water.
	[1]
(iv)	Explain the difference in the electrical conductivity of liquid strontium chloride and liquid sulfur chloride.
	[3]

(b)		ontium chloride-6-water can be made from the insoluble compound, s bonate, by the following reactions.	trontium
	SrC	$CO_3(s) + 2HCl(aq) \rightarrow SrCl_2(aq) + CO_2(g) + H_2O(l)$	
	SrC	$Cl_2(aq) + 6H_2O(I) \rightarrow SrCl_2.6H_2O(s)$	
	The	e following method was used to prepare the crystals.	
		 Add excess strontium carbonate to hot hydrochloric acid. Filter the resulting mixture. Partially evaporate the filtrate and allow to cool. Filter off the crystals of SrCl₂.6H₂O. Dry the crystals between filter papers. 	
	(i)	How would you know when excess strontium carbonate had been added in	ı step 1?
	(ii)	Why is it necessary to filter the mixture in step 2?	
			[1]
	(iii)	In step 3, why partially evaporate the filtrate rather than evaporate to dryne	ss?
			[1]
(c)	use	he above experiment, $50.0\mathrm{cm^3}$ of hydrochloric acid of concentration $2.0\mathrm{mol/ed}$. $6.4\mathrm{g}$ of $\mathrm{SrC}l_2$. $6\mathrm{H}_2\mathrm{O}$ was made. Iculate the percentage yield.	dm³ was
	nun	mber of moles of HC1 used =	
	nun	mber of moles of $SrCl_2.6H_2O$ which could be formed =	
	mas	ss of one mole of $SrCl_2.6H_2O$ is 267 g	
	the	oretical yield of SrCl ₂ .6H ₂ O =g	
	per	centage yield =%	[4]
		П	Гotal: 15]

This qu	estion is c	concerned with the elements in Period 5, Rb to Xe.	
(a) The	e electron	distributions of some of these elements are given in the following list.	
ele ele ele ele	ment D ment E	2+ 2+ 2+ 2+ 2+8+18+18+4 2+8+18+18+7	
(i)	Identify 6	element C.	[1]
(ii)	Which el	ement in the list does not form any compounds?	
(iii)		ement in the list forms a chloride of the type ${ m XC}l_2$?	[1]
			[1]
(iv)		vo elements would react together to form a compound of the type XY ₄ ?	[1]
(v)		ement in the list would react with cold water to form an alkaline solution a	
			[1]
bet phy 	ween rubi	lifferences in physical properties and two differences in chemical propert dium and the transition metal niobium.	ies
			[4]
		[Total:	: 9]

- 6 Until recently, arsenic poisoning, either deliberate or accidental, has been a frequent cause of death. The symptoms of arsenic poisoning are identical with those of a common illness, cholera. A reliable test was needed to prove the presence of arsenic in a body.
 - (a) In 1840, Marsh devised a reliable test for arsenic.

Hydrogen is formed in this reaction. Any arsenic compound reacts with this hydrogen to form arsine which is arsenic hydride, AsH₂.

The mixture of hydrogen and arsine is burnt at the jet and arsenic forms as a black stain on the glass.

(1)	write an equation for the reaction which forms hydrogen.	
		[2]

 (ii) Draw a diagram which shows the arrangement of the outer (valency) electrons in one molecule of the covalent compound arsine.
 The electron distribution of arsenic is 2 + 8 + 18 + 5.

Use x to represent an electron from an arsenic atom. Use o to represent an electron from a hydrogen atom.

	arsenic 97.4 % hydrogen 2.6 %
(i	Calculate the empirical formula of this hydride from the above data . Show your working.
	[2]
(ii	
(iii) Deduce the structural formula of this hydride.
(111)	Deduce the structural formula of this flydride.
	[1]
a	air is a natural protein. Hair absorbs arsenic from the body. Analysis of the hair provides measurement of a person's exposure to arsenic. To release the absorbed arsenic for nalysis, the protein has to be hydrolysed.
(i) What is the name of the linkage in proteins?
	[1]
(ii	Name a reagent which can be used to hydrolyse proteins. [1]
(iii	
	[1]

(b) Another hydride of arsenic has the composition below.

(d)) In the 19th Century, a bright green pigment, copper(II) arsenate(V) was used to kill rate and insects. In damp conditions, micro-organisms can act on this compound to produce the very poisonous gas, arsine.				
	(i)	Suggest a reason why it is necessary to include the oxidation states in the name of the compound.			
		[1]			
	(ii)	The formula for the arsenate(V) ion is ${\sf AsO_4^{3-}}$. Complete the ionic equation for the formation of ${\sf copper}(II)$ arsenate(V).			
		02+			
		Cu ²⁺ +AsO ₄ ³⁻ \rightarrow			
		[Total: 14]			

The structure of an Scandium fluoride and silicon(IV) oxide have giant structures.							
(a)	Sca	Scandium fluoride is an ionic compound.					
	(i)	The valency of scandium is three. Draw a diagram which shows the formula of the compound, the charges on the ions and the arrangement of the valency electrons around the negative ion. Use x to represent an electron from a scandium atom. Use o to represent an electron from a fluorine atom.					
		[3]					
	(ii)	The melting point of scandium fluoride is 1552 $^{\circ}\text{C}.$ Explain why scandium fluoride has a high melting point.					
		[1]					
(b)	Silid	con(IV) oxide has a macromolecular structure.					
	(i)	Describe the structure of silicon(IV) oxide. You may use a diagram.					
		[3]					
	(ii)	How does the electrical conductivity of these two compounds differ?					
		[41]					
((iii)	Explain the difference in conductivity.					
		[2]					
		[Total: 10]					